Platinum Metal Thioether Macrocyclic Complexes: Synthesis, Electrochemistry, and Single-crystal X-Ray Structures of cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right] \mathrm{PF}_{6}$ and trans-[RhCl $\left.\mathrm{L}^{\mathbf{3}}\right] \mathrm{PF}_{6}$ ($L^{2}=1,4,8,11$-tetrathiacyclotetradecane, $L^{3}=1,5,9,13$-tetrathiacyclohexadecane) \dagger

Alexander J. Blake, Gillian Reid, and Martin Schröder*
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ

Abstract

Reaction of RhCl_{3} with 1 mol equivalent of $\mathrm{L}\left[1,4,7,10\right.$-tetrathiacyclododecane (L^{1}), 1,4,8,11-tetrathiacyclotetradecane (L^{2}), and 1,5,9,13-tetrathiacyclohexadecane (L^{3})] in refluxing MeOH affords the rhodium (III) complex cations $\left[\mathrm{RhCl}_{2} \mathrm{~L}\right]{ }^{+}$. The complex cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right] \mathrm{PF}_{6}$ crystallises in the monoclinic space group C2/c, with $a=10.746(8), b=11.298(5), c=15.708$ (8) $\AA, \beta=92.00(5)^{\circ}$, and $Z=4$. A single-crystal X-ray structure shows the cation sitting on a crystallographically imposed C_{2} axis with octahedral $R h^{\prime \prime \prime}$ bound to two mutually cis chloro ions [$\mathrm{Rh}-\mathrm{Cl} 2.3836(12) \AA$ A . The tetrathia macrocycle adopts a folded conformation with $\mathrm{S}(1)$ and $\mathrm{S}(8)$ trans to chloride, $\mathrm{Rh}-\mathrm{S}(1) 2.2870(12)$ and $\mathrm{Rh}-\mathrm{S}(4) 2.3275(12) \AA$. The trans isomer has not been detected spectroscopically in reactions of $R h^{11 \prime}$ with L^{1} and L^{2}; the tendency of these ligands to coordinate to second- and third-row transition-metal ions to form cis complexes is ascribed to the large radii of these metal ions relative to the cavity size of the 12 -and 14 -membered rings. This is confirmed by structural analysis of [$\left.\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right] \mathrm{PF}_{6}$ which shows mutually trans chloro ligands, $\mathrm{Rh}-\mathrm{Cl}$ 2.3391 (22) \AA. The complex trans $-\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right] \mathrm{PF}_{6}$ crystallises in the monoclinic space group $C 2 / c$, with $a=11.9507(20), b=11.1055(15), c=16.2067(18) \AA, \beta=95.197(21)^{\circ}$, and $Z=4$. The single-crystal X-ray structure shows Rh^{111} on an inversion centre with the six-membered chelate rings of the macrocycle adopting alternate chair and twist-boat conformations, $\mathrm{Rh}-\mathrm{S}(1)$

2.348 3(25) and Rh-S(5) 2.348 3(27) Å.

As part of a study of the binding of polythioether macrocycles to platinum-group metal ions, ${ }^{1}$ we have investigated the incorporation of $\mathrm{Rh}^{\text {III }}$ into the $12-, 14$-, and 16 -membered ring tetrathia macrocycles $1,4,7,10$-tetrathiacyclododecane (L^{1}), 1,4,8,11tetrathiacyclotetradecane (L^{2}), and 1,5,9,13-tetrathiacyclohexadecane (L^{3}). The insertion of $\mathrm{Rh}^{\text {III }}$ into L^{2} has been reported previously by Travis and Busch ${ }^{2}$ to afford a dichloro complex assigned as cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]^{+}$. The solid-state structure of the metal-free ligand L^{2} shows the lone pairs on S directed away from the macrocyclic hole suggesting a tendency to exodentate binding of metal ions. ${ }^{3}$ Indeed, exodentate coordination of the ligand has been observed in $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{10} \mathrm{~L}^{2}\right],{ }^{4}$ $\left[\mathrm{Hg}_{2} \mathrm{Cl}_{4} \mathrm{~L}^{2}\right],{ }^{5}$ and $\left[\mathrm{M}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{~L}^{2}\right]^{2+}\left(\mathrm{M}=\mathrm{Rh}\right.$ or Ir), ${ }^{1}$ while endodentate binding occurs in the square-planar complexes of $\mathrm{Ni}^{11},{ }^{6} \mathrm{Cu}^{\mathrm{II}},{ }^{7}$ and $\mathrm{Pd}^{\mathrm{II}} .{ }^{1}$ The copper(I) species $\left[\mathrm{CuL}^{2}\right]^{+}$shows a chain structure with the tetrahedral metal centre bound to three thia donors of one ligand and one thia donor of another macrocycle. ${ }^{8}$

In view of the observation that cyclam (1,4,8,11-tetraazacyclotetradecane) binds $\mathrm{Rh}^{\text {III }}$ to afford cis- and trans$\left[\mathrm{RhCl}_{2}(\text { cyclam })\right]^{+}$depending upon the reaction conditions, ${ }^{9}$ we wished to determine whether it might be possible to generate the complex trans- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]^{+}$. In addition, the synthesis of macrocyclic complexes incorporating two mutually cis labile sites is of particular interest with respect to potential carbonyl ${ }^{10}$ and hydride ${ }^{11}$ insertion reactions at a metal template.

Related 16-membered tetrathia macrocycles have been shown recently to bind Mo^{0} and $\mathrm{Mo}^{\mathrm{II}}$ to give the trans complexes $\left[\mathrm{MoL}(\mathrm{CO})_{2}\right]$ and $\left[\mathrm{MoX}_{2} \mathrm{~L}\right](\mathrm{X}=\mathrm{Cl}$ or Br ;

[^0]
L^{1}

L^{2}

L^{3}

$\mathrm{L}=3,3,7,7,11,11,15,15$-octamethyl-1,5,9,13-tetrathiacyclohexadecane). ${ }^{12}$ In view of the smaller ionic radius of $R h^{\text {III }}$ relative to Mo^{0} and $\mathrm{Mo}^{\mathrm{II}}$, we argued that the 16 -membered macrocycle 1,5,9,13-tetrathiacyclohexadecane, L^{3}, would be capable of binding $\mathrm{Rh}^{\mathrm{III}}$ to yield a trans complex.

Results and Discussion

Reaction of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{L}^{1}, \mathrm{~L}^{2}$, or L^{3} in refluxing MeOH under N_{2} afforded a bright yellow solution. Addition of an

Figure 1. Single-crystal X-ray structure of cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]^{+}$with the numbering scheme adopted. $S(8)-C(14)$ are related to $S(1)-C(7)$ by the crystallographic two-fold axis, as are $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$

Figure 2. Single-crystal X-ray structure of cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]^{+}$with the numbering scheme adopted (alternative view)

Figure 3. Single-crystal X-ray structure of trans - $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right]^{+}$with the numbering scheme adopted
excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in MeOH to the filtered solution gave a yellow precipitate which was recrystallised from MeCN . Elemental analysis of the product indicated the formation of the complexes $\left[\mathrm{RhCl}_{2} \mathrm{~L}\right] \mathrm{PF}_{6}$. Replacement of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ with NaBPh_{4} in the above preparation led to isolation of the corresponding BPh_{4}^{-}salts.
Fast-atom-bombardment mass spectroscopy of $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]$ PF_{6} showed positive-ion peaks with the correct isotopic distributions at $m / z 441,406$, and 370 corresponding to $\left[{ }^{103} \mathrm{Rh}^{35} \mathrm{Cl}_{2} \mathrm{~L}^{2}\right]^{+}, \quad\left[{ }^{103} \mathrm{Rh}^{35} \mathrm{ClL}^{2}\right]^{+}$, and $\left[{ }^{103} \mathrm{RhL}^{2}-\mathrm{H}\right]^{+}$ respectively via successive loss of chloride ion. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the BPh_{4}^{-}salt confirmed the ratio of one BPh_{4}^{-} anion to one L^{2} ligand, while the ${ }^{13} \mathrm{C}$ n.m.r. spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ showed five resonances for the methylene centres of the

Figure 4. Single-crystal X-ray structure of trans- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right]^{+}$with the numbering scheme adopted (alternative view)
macrocycle at $\delta 38.31,30.10,29.95,29.85$, and 23.84 p.p.m. indicating the presence of only one isomer in solution involving cis-dichloro ligands. The assignment of the cation as a cis isomer was suggested also by u.v.--visible spectral data which showed $d-d$ absorption bands at $\lambda_{\text {max. }}=362\left(\varepsilon_{\text {max. }}=949\right), 319(765)$, and a charge-transfer band at $260 \mathrm{~nm}\left(\varepsilon_{\text {max. }}=10370 \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ cm^{-1}). The magnitudes of the absorption coefficients for the $d-d$ transitions are consistent with the lower-symmetry cis isomer; octahedral d^{6} complexes tend to show ${ }^{9}$ lower absorption coefficients in trans configurations. The i.r. spectrum of the complex shows several weak bands in the range $270-350 \mathrm{~cm}^{-1}$. It is difficult to assign these bands since both $\mathrm{Rh}-\mathrm{Cl}$ and $\mathrm{Rh}-\mathrm{S}$ stretching vibrations, $v(\mathrm{Rh}-\mathrm{Cl})$ and $v(\mathrm{Rh}-\mathrm{S})$, occur in this region of the spectrum.

In order to confirm the stereochemistry and conformation of the complex and to obtain bond-length distributions, a singlecrystal X-ray structural determination was undertaken. Single crystals of $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right] \mathrm{PF}_{6}$ were obtained by recrystallisation of the complex from MeCN . Figures 1 and 2 give two views of the complex cation. The structural analysis confirms the cis configuration of the complex [$\mathrm{Rh}-\mathrm{Cl} 2.3836(12), \mathrm{Rh}-\mathrm{S}(1)$ 2.2870 (12), and $\mathrm{Rh}-\mathrm{S}(4) 2.3275(12) \AA]$ with the Rh atom lying on a crystallographic two-fold axis. The folded tetrathia macrocycle is co-ordinated to the $\mathrm{Rh}^{\text {III }}$ via all four S-donors with the angles around the metal being close to octahedral. The conformation of L^{2} in cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]^{+}$is very similar to that observed in the related d^{6} complexes cis- $\left[\mathrm{RuCl}_{2} \mathrm{~L}^{2}\right],{ }^{13}$ cis$\left[\mathrm{IrCl}_{2} \mathrm{~L}^{2}\right]^{+} .{ }^{14}$ The pattern of $\mathrm{Rh}-\mathrm{S}$ bond lengths follows that observed for $c i s-\left[\mathrm{RuCl}_{2} \mathrm{~L}^{2}\right]^{13}$ and $c i s-\left[\mathrm{IrCl}_{2} \mathrm{~L}^{2}\right]^{+14}$ with $\mathrm{Rh}-\mathrm{S}(1)$ trans to $\mathrm{Cl}(1)$ being 0.040 (2) \AA shorter than $\mathrm{Rh}-\mathrm{S}(4)$ trans to $\mathrm{S}(11)$. This is consistent with overall π donation from Cl^{-}to Rh and through to the π-acceptor thioether donor atom.
On the basis of analytical data, and n.m.r., electronic, and mass spectroscopy, the rhodium(III) complex of L^{1} is assigned as cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{1}\right]^{+}$.

Our studies on the complexation of $\mathrm{Rh}^{\text {III }}$ by the 12 -and 14membered ring macrocycles indicate that the formation of octahedral cis-dichloro species is preferred. We have thus far been unable to detect the formation of trans-dichloro products, although such species have been isolated for rhodium(III) complexes of the tetra-aza ligands cyclam ${ }^{9}$ and tmc ($\mathrm{tmc}=$ tetramethylcyclam). ${ }^{15}$ This may reflect the smaller hole size of L^{2} compared with tetra-aza ligands of the same ring size due to the greater van der Waals radius of S compared with N . These results suggested that tetrathia macrocycles with larger ring sizes might be required to achieve equatorial complexation of
the platinum-group metal ions. We therefore undertook a spectroscopic and crystallographic study of $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right] \mathrm{PF}_{6}$.

The u.v.-visible spectrum of $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right]^{+}$shows a $d-d$ transition at $\lambda_{\text {max. }}=369 \mathrm{~nm}$ with $\varepsilon_{\text {max. }}=151 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$. The low absorption coefficient for this absorption band is consistent with a trans configuration of the Cl^{-}ligands at $\mathrm{R} h^{\text {III. }} 9$ In addition, the i.r. spectrum of the complex shows peaks at 365 and $305 \mathrm{~cm}^{-1}$ tentatively assigned to $\mathrm{Rh}-\mathrm{S}$ and $\mathrm{Rh}-\mathrm{Cl}$ stretching vibrations, $v(\mathrm{Rh}-\mathrm{S})$ and $v(\mathrm{Rh}-\mathrm{Cl})$, respectively. The structure of trans- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right]^{+}$was confirmed by a single-crystal X-ray structural determination. Figures 3 and 4 show views of the complex cation which has the Rh atom lying on a crystallographic inversion centre. The tetrathia ligand is bound equatorially to the $\mathrm{Rh}^{\text {III }}[\mathrm{Rh}-\mathrm{S}(1) 2.3483(25)$ and $\mathrm{Rh}-\mathrm{S}(5)$ $2.3483(27) \AA]$ with the six-membered chelate rings adopting alternate chair and twist-boat conformations. The Cl^{-}ligands are mutually trans to one another with $\mathrm{Rh}-\mathrm{Cl}(1) 2.3391(22) \AA$. The ${ }^{13} \mathrm{C}$ n.m.r. spectrum of the complex in $\mathrm{CD}_{3} \mathrm{NO}_{2}$ shows four resonances at $\delta 34.42,32.27,23.26$, and 21.85 p.p.m. confirming retention of this stereochemistry in solution.

Reaction of RhCl_{3} with L^{4} ($\mathrm{L}^{4}=1,7,10,13,16$-hexathiacyclooctadecane) in refluxing MeCN for 24 h followed by addition of an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ affords a product tentatively assigned as [$\left.\mathrm{RhCl}_{2} \mathrm{~L}^{4}\right] \mathrm{PF}_{6}$. The fast-atom-bombardment mass spectrum of the isolated product shows peaks at $m / z 534,498$, and 463 assigned to $\left[{ }^{103} \mathrm{Rh}^{35} \mathrm{Cl}_{2} \mathrm{~L}^{4}+\mathrm{H}\right]^{+}, \quad\left[{ }^{103} \mathrm{Rh}^{35} \mathrm{ClL}^{4}\right]^{+}$, and $\left[{ }^{103} \mathrm{RhL}{ }^{4}\right]^{+}$respectively. Molecular peaks corresponding to dimeric species have not been observed. Identification of this product has been difficult since the analytical data were intermediate between the formulations $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{4}\right] \mathrm{PF}_{6}$ and $\left[\mathrm{RhClL}^{4}\right]\left[\mathrm{PF}_{6}\right]_{2}$. Weak bands are observed in the i.r. spectrum at 320 and $355 \mathrm{~cm}^{-1}$ assigned to $\mathrm{Rh}-\mathrm{S}$ or $\mathrm{Rh}-\mathrm{Cl}$ stretching vibrations. However, from our limited experimental data on this system it appears that the formation of the homoleptic cation $\left[R h L^{4}\right]^{3+}$ is inhibited. This may be due to conformational constraints of the sexidentate macrocycle binding to a kinetically inert second-row $(3+)$ transition-metal ion. In addition, deprotonation and ring opening of co-ordinated L^{4} can occur in the presence of $\mathrm{Rh}^{\mathrm{III}}$, thus reducing the potential yield of $\left[\mathrm{RhL}^{4}\right]^{+}$.

Cyclic voltammetry of cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}\right]^{+}\left(\mathrm{L}=\mathrm{L}^{1}\right.$ or $\left.\mathrm{L}^{2}\right)$ in $\mathrm{MeCN}\left(0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NBu}^{\mathrm{n}}{ }_{4} \mathrm{PF}_{6}\right)$ at platinum electrodes shows an irreversible reduction for each complex at $E_{\mathrm{pc}}=-1.10$ and -1.18 V respectively, while for trans $-\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right]^{+}$a quasireversible reduction is observed at $E_{\frac{1}{2}}=-0.83 \mathrm{~V}\left(E_{\mathrm{pc}}=\right.$ -1.08 V) vs. ferrocene-ferrocenium. No oxidation was observed for these complexes in the range $0-2.0 \mathrm{~V}$ vs. ferroceneferrocenium. Coulometry at 298 K indicated that the reduction of cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]^{+}$and trans $-\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right]^{+}$is, in each case, a oneelectron process affording a highly reactive radical species. The e.s.r. spectrum of the reduction product of trans- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]^{+}$, measured as a MeCN glass at 77 K , shows a weak signal with $g_{1}=2.230, g_{2}=2.090$, and $g_{3}=2.003$ tentatively assigned to the formation, in low yield, of a d^{7} rhodium(II) species. These reduction products are, however, extremely reactive, and their further characterisation was inhibited by decomposition reactions in solution. Coulometry showed the reduction of cis$\left[\mathrm{RhCl}_{2} \mathrm{~L}^{1}\right]^{+}$to involve up to two electrons, with rapid decomposition of the redox product occurring in solution. The formation of reactive rhodium(11) species via loss of Cl^{-}ions from the metal centre is likely to be involved in these redox reactions. Indeed, a $\mathrm{Cl}^{/ / 0}$ couple is observed in the cyclic voltammogram of the reaction solution following reduction of $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]^{+}$. Interestingly, the complex cation trans$\left[\mathrm{RhCl}_{2}(\mathrm{tmc})\right]^{+}$shows a quasi-reversible $\mathrm{Rh}^{\mathrm{III}}-\mathrm{Rh}^{\text {II }}$ couple at -0.99 V vs. ferrocene-ferrocenium under the same conditions. ${ }^{15}$ This again may reflect the greater cavity size of the N_{4} ligand versus its S_{4} analogue, coupled with destabilisation of
Rh^{I} in a tetra-aza co-ordination sphere. The synthesis of [$\left.\mathrm{RhL} \mathrm{L}^{2}\right]^{+}$has been reported previously; ${ }^{16}$ the single-crystal X ray structure of this species shows the Rh atom lying $0.133(2)$ \AA above the S_{4} plane of the macrocycle with additional intermolecular $\mathrm{Rh} \cdots \mathrm{Rh}$ and $\mathrm{Rh} \cdots \mathrm{S}$ interactions being observed in the solid state. ${ }^{16}$ Current work is aimed at elucidating the mechanisms of reduction of $\left[\mathrm{RhCl}_{2} \mathrm{~L}\right]^{+}(\mathrm{L}=$ tmc, L^{1}, L^{2}, or L^{3}) and to probe the intermediacy of monomeric and dimeric rhodium(II) species in these reactions.

Experimental

Infrared spectra were measured as Nujol mulls, KBr and CsI discs using a Perkin-Elmer 598 spectrometer over the range $200-4000 \mathrm{~cm}^{-1}$. U.v.-visible spectra were measured in quartz cells using Perkin-Elmer Lambda 9 and Philips Scientific SP8400 spectrophotometers. Microanalyses were performed by the Edinburgh University Chemistry Department microanalytical service. Electrochemical measurements were performed on a Bruker E310 Universal Modular Polarograph. All readings were taken using a three-electrode potentiostatic system in acetonitrile containing $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NBu}_{4}{ }_{4} \mathrm{PF}_{6}$ or $\mathrm{NBu}_{4} \mathrm{BF}_{4}$ as supporting electrolyte. Cyclic voltammetric measurements were carried out using a double platinum electrode and a $\mathrm{Ag}-$ AgCl reference electrode. All potentials are quoted versus ferrocene-ferrocenium. Mass spectra were run by electron impact on a Kratos MS 902 and by fast-atom-bombardment (f.a.b.) on a Kratos MS 50TC spectrometer. Proton and ${ }^{13} \mathrm{C}$ n.m.r. spectra were obtained on Bruker WP80 and WP200 instruments.

Synthesis of cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{1}\right] \mathrm{PF}_{6}$.-Reaction of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ $\left(0.043 \mathrm{~g}, 1.66 \times 10^{-4} \mathrm{~mol}\right)$ in water $\left(5 \mathrm{~cm}^{3}\right)$ with $\mathrm{L}^{1}(0.04 \mathrm{~g}$, $1.66 \times 10^{-4} \mathrm{~mol}$) in refluxing $\mathrm{MeOH}\left(130 \mathrm{~cm}^{3}\right)$ for 2 h afforded a bright yellow solution. Addition of an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ gave the product as a yellow precipitate which was collected and recrystallised from MeCN and dried in vacuo. Yield $=0.075 \mathrm{~g}$, 81% \{Found: C, 17.2; H, 2.90; S, 23.1. Calc. for $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{1}\right] \mathrm{PF}_{6}$: C, $17.2 ; \mathrm{H}, 2.90 ; \mathrm{S}, 22.9 \%\}$. U.v.-visible spectrum (MeCN): $\lambda_{\text {max }_{3}}$ $401\left(\varepsilon_{\max .}=1781\right), 300(\mathrm{sh})(1165)$, and $250 \mathrm{~nm}\left(21920 \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$). F.a.b. mass spectrum (matrix, 3-nitrobenzyl alcohol): Found $m / z 413,378$; calc. for $\left[{ }^{103} \mathrm{Rh}^{35} \mathrm{Cl}_{2} \mathrm{~L}^{1}\right]^{+} m / z$ 413, for $\left[{ }^{103} \mathrm{Rh}^{35} \mathrm{ClL}^{1}\right]^{+} 378$. N.m.r. $\left(\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$: ${ }^{1} \mathrm{H}(80$ $\mathrm{MHz}), \delta 3.3-4.2\left(16 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~m}\right) ;{ }^{13} \mathrm{C}(50.32 \mathrm{MHz}), \delta 44.41$, $41.03,36.08$, and 35.16 p.p.m. $\left(\mathrm{CH}_{2}\right)$. Infrared spectrum $(\mathrm{KBr}$ disc): $2990 \mathrm{~m}, 2925 \mathrm{~m}, 1410 \mathrm{vs}, 1280 \mathrm{~m}, 1265 \mathrm{~m}, 1150 \mathrm{w}, 1120 \mathrm{w}$, $1090 \mathrm{~m}, 990 \mathrm{w}, 950 \mathrm{w}, 925 \mathrm{~m}, 840 \mathrm{vs}, 555 \mathrm{vs}, 360 \mathrm{~m}, 345 \mathrm{~m}, 330 \mathrm{~m}$, 290 m , and $270 \mathrm{w} \mathrm{cm}^{-1}$.

Synthesis of cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right] \mathrm{PF}_{6}$.-To a refluxing solution of $\mathrm{L}^{2}\left(0.061 \mathrm{~g}, 2.28 \times 10^{-4} \mathrm{~mol}\right)$ in $\mathrm{MeOH}\left(100 \mathrm{~cm}^{3}\right)$ was added $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\left(0.06 \mathrm{~g}, 2.28 \times 10^{-4} \mathrm{~mol}\right)$ in water $\left(5 \mathrm{~cm}^{3}\right)$. The reaction mixture was refluxed for 1 h under N_{2} to afford a bright yellow solution which was filtered to remove insoluble chlorobridged polymer. Addition of an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in MeOH yielded a yellow precipitate, which was collected, washed with methanol, recrystallised from MeCN , and dried in vacuo. Yield $=0.1 \mathrm{~g}, 75 \%$. As reported by Busch and co-workers, ${ }^{2}$ it is important that addition of RhCl_{3} should occur to a refluxing solution of the ligand to minimise the formation of chlorobridged polymer species. Elemental analysis \{Found: C, 20.4; $\mathrm{H}, 3.4 ; \mathrm{S}, 21.4$. Calc. for $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right] \mathrm{PF}_{6}: \mathrm{C}, 20.4 ; \mathrm{H}, 3.4 ; \mathrm{S}$, $21.8 \%\}$. U.v.-visible spectrum (MeCN): $\lambda_{\max .}=362\left(\varepsilon_{\max }=\right.$ 949), 319 (765), and $260 \mathrm{~nm}\left(10370 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$). Infrared spectrum (KBr disc): $3000 \mathrm{~m}, 2940 \mathrm{w}, 2920 \mathrm{w}, 1430 \mathrm{vs}, 1420 \mathrm{vs}$, $1400 \mathrm{~m}, 1360 \mathrm{w}, 1300 \mathrm{w}, 1280 \mathrm{w}, 1270 \mathrm{~m}, 1240 \mathrm{w}, 1190 \mathrm{w}$, $1160 \mathrm{w}, 1130 \mathrm{~m}, 1100 \mathrm{w}, 1020 \mathrm{w}, 1010 \mathrm{w}, 985 \mathrm{~m}, 930 \mathrm{~m}, 840 \mathrm{vs}$, $555 \mathrm{vs}, 460 \mathrm{w}, 370 \mathrm{w}, 310 \mathrm{~m}$, and $280 \mathrm{~m} \mathrm{~cm}^{-1}$.

Synthesis of cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right] \mathrm{BPh}_{4}$.-The BPh_{4}^{-}salt was

Table 1. Bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ with standard deviations for cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]^{+}$

Rh-Cl(1)	2.3836(12)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.509(8)
Rh-S(1)	$2.2870(12)$	C(3)-S(4)	1.827(5)
$\mathbf{R h - S (4)}$	$2.3275(12)$	S(4)-C(5)	1.816(6)
$\mathrm{S}(1)-\mathrm{C}(2)$	1.814(5)	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.525(8)$
S(1)-C(14)	$1.806(5)$	$\mathrm{C}(6)-\mathrm{C}(7)$	1.510(8)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(1)$	92.00(4)	$\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(14)$	108.96(18)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(4)$	86.51(4)	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(14)$	105.32(25)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{Cl}(2)$	92.01(4)	$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	107.7(4)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(8)$	174.25(4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	109.3(4)
$\mathrm{Cl}(1)-\mathrm{Rh}^{-S}(11)$	88.72(4)	Rh-S(4)-C(3)	103.19(17)
S(1)-Rh-S(4)	87.40(4)	Rh-S(4)-C(5)	111.43(19)
$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{S}(8)$	84.32(4)	$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	103.1(3)
$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{S}(11)$	97.71(4)	$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	118.2(4)
$\mathrm{S}(4)-\mathrm{Rh}-\mathrm{S}(8)$	97.71(4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	115.9(5)
S(4)-Rh-S(11)	173.13(4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(8)$	108.7(4)
$\mathrm{Rh}(1)-\mathrm{S}(1)-\mathrm{C}(2)$	100.37(18)		
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(2)$	60.09(18)	$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(3)$	175.39(18)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(14)$	-50.21(19)	$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(5)$	65.42(20)
$\mathrm{S}(4)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(2)$	-26.32(18)	$\mathrm{S}(8)-\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(3)$	83.55(18)
$\mathrm{S}(4)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(14)$	-136.63(19)	$\mathrm{S}(8)-\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(5)$	-26.42(21)
$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(2)$	-74.0(5)	$\mathrm{S}(11)-\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(3)$	-138.6(4)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(8)-\mathrm{C}(7)$	175.7(4)	$\mathrm{S}(11)-\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(5)$	111.4(4)
$\mathrm{S}(8)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(2)$	-124.35(18)	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	-173.9(4)
$\mathrm{S}(8)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(14)$	125.36(19)	$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	-60.9(4)
$\mathrm{S}(11)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(2)$	149.07(18)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{Rh}$	34.5(4)
$\mathrm{S}(11)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(14)$	38.77(19)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	150.6(4)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(3)$	-92.52(18)	$\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	40.0(5)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(5)$	157.51(20)	$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-70.1(5)
$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(3)$	-0.36(18)	S(4)-C(5)-C(6)-C(7)	-70.9(6)
$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(5)$	$-110.33(20)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(8)$	85.1(5)

Table 2. Fractional co-ordinates with standard deviations for cis$\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]^{+}$

Atom	x	y	z
Rh	c $\mathrm{Cl}(1)$	0.0	$0.45314(4)$
$\mathrm{S}(1)$	$0.07834(11)$	$0.59969(10)$	0.25
$\mathrm{C}(2)$	$-0.05636(11)$	$0.30309(10)$	$0.34115(7)$
$\mathrm{C}(3)$	$-0.0343(5)$	$0.3415(5)$	$0.4325(3)$
$\mathrm{S}(4)$	$-0.1689(5)$	$0.3498(5)$	$0.4025(3)$
$\mathrm{C}(5)$	$-0.18558(12)$	$0.46548(9)$	$0.32158(8)$
$\mathrm{C}(6)$	$-0.3167(5)$	$0.4145(5)$	$0.2554(4)$
$\mathrm{C}(7)$	$-0.2985(5)$	$0.3060(5)$	$0.1994(3)$
$\mathrm{P}(1)$	$-0.2169(5)$	$0.3233(5)$	$0.1241(3)$
$\mathrm{F}(1)$	0.0	0.0	0.5
$\mathrm{~F}(2)$	$0.1127(3)$	$0.0707(3)$	$0.46185(24)$
$\mathrm{F}(3)$	$0.0944(4)$	$-0.0631(3)$	$0.56491(25)$
	$-0.0188(4)$	$0.1039(3)$	$0.56501(21)$

prepared by using NaBPh_{4} instead of NaPF_{6} in the above preparation $\{$ Found: $\mathrm{C}, 53.4 ; \mathrm{H}, 5.4 ; \mathrm{Cl}, 9.7 ; \mathrm{S}, 16.9$. Calc. for $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right] \mathrm{BPh}_{4}: \mathrm{C}, 53.6 ; \mathrm{H}, 5.25 ; \mathrm{Cl}, 9.3 ; \mathrm{S}, 16.8 \%$ \}. F.a.b. mass spectrum (3-NOBA matrix): found: $m / z 441,406$, and 370 ; calc. for $\left[{ }^{103} \mathrm{Rh}^{35} \mathrm{Cl}_{2} \mathrm{~L}^{2}\right]^{+} m / z 441$, for $\left[{ }^{103} \mathrm{Rh}^{35} \mathrm{ClL}^{2}\right]^{+} 406$, and for $\left[{ }^{103} \mathrm{RhL}^{2}-\mathrm{H}\right]{ }^{+} 370$. N.m.r. $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \cdot{ }^{1} \mathrm{H}(80 \mathrm{MHz}, 298 \mathrm{~K}), \delta$ $6.8-7.7\left(20 \mathrm{H}, \mathrm{BPh}_{4}{ }^{-}, \mathrm{m}\right)$ and $2.5-3.6\left(20 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~m}\right) ;{ }^{13} \mathrm{C}(50.32$ $\mathrm{MHz}, 333 \mathrm{~K}), \delta 38.31,30.10,29.95,29.85$, and 23.84 p.p.m. $\left(\mathrm{CH}_{2}\right)$.

X -Ray Structure Determination of cis- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right] \mathrm{PF}_{6} .-\mathrm{A}$ bright yellow crystal ($0.50 \times 0.50 \times 0.30 \mathrm{~mm}$) suitable for X-ray analysis was obtained by recrystallisation from MeCN .
Crystal data. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{RhS}_{4}{ }^{+} \mathrm{PF}_{6}{ }^{-}, M=587.284$, monoclinic, space group $C 2 / c, a=10.746(8), b=11.298(5), c=$ $15.708(8) \AA, \beta=92.00(5)^{\circ}, U=1905.92 \AA^{3}$ [from diffractometer angles for 12 centred reflections with $2 \theta=30-33^{\circ}(\bar{\lambda}=$
$0.71073 \AA)], \quad D_{\mathrm{c}}=2.047 \mathrm{~g} \mathrm{~cm}^{-3}, \quad Z=4, \quad F(000)=1168$, $\bar{\lambda}\left(\mathrm{Mo}-K_{\alpha}\right)=0.71073 \AA, \mu=16.5 \mathrm{~cm}^{-1}$.

Data collection and processing. Stoë STADI-4 four-circle diffractometer. After determination of an accurate orientation matrix, 1320 independent data ($h-12$ to $12, k 0$ to $12, l 0$ to 17) were collected to $2 \theta=45^{\circ}$ using $\omega-\theta$ scans with ω scan width $(2.0+0.35 \tan \theta)^{\circ}$. Data reduction yielded 1161 reflections with $F \geqslant 6 \sigma(F)$ which were used for solution and refinement of the structure. No significant crystal decay, no absorption correction.
Structure analysis and refinement. The position of the Rh atom was obtained from a Patterson synthesis. Subsequent iterative rounds of least-squares refinement and difference Fourier synthesis ${ }^{17}$ located all remaining atoms, including H atoms which were then refined positionally but with a fixed, isotropic thermal parameter ($U=0.08 \AA^{2}$). All non-H atoms were refined anisotropically. Both the PF_{6}^{-}counter ion and the $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{2}\right]^{+}$cation were ordered. The weighting scheme $w^{-1}=$ $\sigma^{2}(F)+0.000076 F^{2}$ gave satisfactory analyses. At convergence, $R, R^{\prime}=0.0311$ and 0.0461 respectively for 141 parameters, $S=1.191$. The maximum and minimum residues in the final ΔF synthesis were +0.84 and -0.50 e \AA^{-3} respectively. The Rh atom lies on a crystallographic two-fold axis while the P of the $\mathrm{PF}_{6}{ }^{-}$counter ion occupies a crystallographic inversion centre. Illustrations were prepared using ORTEP, ${ }^{18}$ molecular geometry calculations utilised CALC, ${ }^{19}$ and scattering factor data were taken from ref. 20. Bond lengths, angles, torsion angles, and fractional co-ordinates are given in Tables 1 and 2.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates and thermal parameters.

Synthesis of trans- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right] \mathrm{PF}_{6}$.-Reaction of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ $\left(0.035 \mathrm{~g}, 1.35 \times 10^{-4} \mathrm{~mol}\right)$ in water $\left(5 \mathrm{~cm}^{3}\right)$ with $\mathrm{L}^{3}(0.04 \mathrm{~g}$, $1.35 \times 10^{-4} \mathrm{~mol}$) in refluxing EtOH ($150 \mathrm{~cm}^{3}$) for 1 h afforded a

Table 3. Bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ with standard deviations for trans- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right]^{+}$

$\mathrm{Rh}-\mathrm{Cl}(1)$	2.3391 (22)	$\mathrm{S}(5)-\mathrm{C}(6)$	1.800(14)
$\mathrm{Rh}-\mathrm{S}(1)$	2.348 3(25)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.517(21)
Rh-S(5)	2.348 3(27)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.514(22)
$\mathrm{S}(1)-\mathrm{C}(2)$	1.811(13)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.507(22)
S(1)-C(8^{\prime})	1.832(14)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.501(22)
S(5)-C(4)	1.807(15)		
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(1)$	92.88(8)	$\mathrm{C}(4)-\mathrm{S}(5)-\mathrm{C}(6)$	97.2(6)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(5)$	92.72(8)	S(1)-C(2)-C(3)	112.1(10)
$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{S}(5)$	90.31(9)	$C(2)-C(3)-C(4)$	114.8(13)
Rh-S(1)-C(2)	110.1(4)	$S(5)-C(4)-C(3)$	115.1(11)
$\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}\left(8^{\prime}\right)$	104.5(5)	S(5)-C(6)-C(7)	111.8(10)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}\left(8^{\prime}\right)$	97.1(6)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	115.0(13)
Rh-S(5)-C(4)	110.0(5)	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}(8)-\mathrm{C}(7)$	112.4(10)
Rh-S(5)-C(6)	105.1(4)		
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(2)$	45.3(4)	$\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	65.6(10)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}\left(8^{\prime}\right)$	-58.0(5)	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	173.9(11)
$\mathrm{S}(5)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(2)$	-47.5(4)	$\mathrm{Rh}-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}(8)-\mathrm{C}(7)$	80.5(11)
$\mathrm{S}(5)-\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}\left(8^{\prime}\right)$	-150.8(5)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}(8)-\mathrm{C}(7)$	-166.6(11)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}(8)$	-122.0(5)	Rh-S(5)-C(4)-C(3)	-61.7(12)
$\mathrm{S}(5)-\mathrm{Rh}-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}(8)$	-29.2(5)	$\mathrm{C}(6)-\mathrm{S}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	- 170.7(11)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(5)-\mathrm{C}(4)$	-47.9(5)	$\mathrm{Rh}-\mathrm{S}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	81.4(10)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{S}(5)-\mathrm{C}(6)$	55.8(5)	$\mathrm{C}(4)-\mathrm{S}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	- 165.5(11)
$\mathbf{S}(1)-\mathrm{Rh}-\mathrm{S}(5)-\mathrm{C}(4)$	45.0(5)	$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-76.1(14)
$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{S}(5)-\mathrm{C}(6)$	148.7(5)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-S(5)$	74.9(15)
$\mathbf{S}\left(1^{\prime}\right)-\mathrm{Rh}-\mathrm{S}(5)-\mathrm{C}(4)$	-135.0(5)	$\mathrm{S}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-42.8(16)
$\mathbf{S}\left(1^{\prime}\right)-\mathbf{R h}-\mathbf{S}(5)-\mathrm{C}(6)$	-31.3(5)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{S}\left(1^{\prime}\right)$	-44.0(16)

Primed atoms are related to their unprimed equivalents by inversion through $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.

Table 4. Atomic co-ordinates with standard deviations for trans$\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right]^{+} \mathrm{PF}_{6}^{-}$

Atom	x	y	z
Rh	0.5000	0.5000	0.5000
$\mathrm{Cl}(1)$	$0.62675(18)$	$0.55942(22)$	$0.40595(12)$
$\mathrm{S}(1)$	$0.50137(20)$	$0.69042(22)$	$0.56309(16)$
$\mathrm{S}(5)$	$0.34348(19)$	$0.5560(3)$	$0.41011(14)$
$\mathrm{C}(2)$	$0.4892(12)$	$0.8073(9)$	$0.4849(8)$
$\mathrm{C}(3)$	$0.3765(15)$	$0.8042(13)$	$0.4338(11)$
$\mathrm{C}(4)$	$0.3639(11)$	$0.7051(15)$	$0.3695(8)$
$\mathrm{C}(6)$	$0.3581(10)$	$0.4744(16)$	$0.3157(6)$
$\mathrm{C}(7)$	$0.3168(11)$	$0.3466(20)$	$0.3207(10)$
$\mathrm{C}(8)$	$0.3509(10)$	$0.2834(12)$	$0.4009(10)$
$\mathrm{P}(1)$	0.5000	$0.0212(3)$	0.2500
$\mathrm{~F}(1)$	$0.6118(5)$	$0.0220(6)$	$0.2052(4)$
$\mathrm{F}(2)$	$0.4340(7)$	$0.0257(11)$	$0.1640(5)$
$\mathrm{F}(3)$	0.5000	$-0.1144(10)$	0.2500
$\mathrm{~F}(4)$	0.5000	$0.1609(10)$	0.2500

bright yellow solution. Addition of an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ gave the product as a yellow precipitate which was collected and recrystallised from MeCN and dried in vacuo. Yield $=0.060 \mathrm{~g}$, 72% \{Found: C, 23.6; H, 3.90. Calc. for $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right] \mathrm{PF}_{6}$: C, 23.4; $\mathrm{H}, 3.95 \%$ \}. U.v.-visible spectrum (MeCN): $\lambda_{\text {max. }}=369\left(\varepsilon_{\text {max. }}=\right.$ 151), 278 (38290), and $232 \mathrm{~nm}\left(18930 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$). F.a.b. mass spectrum (3-NOBA matrix): found $m / z 469,434$, and 399 ; calc. for $\left[{ }^{103} \mathrm{Rh}^{35} \mathrm{Cl}_{2} \mathrm{~L}^{3}\right]^{+} m / z 469$, for $\left[{ }^{103} \mathrm{Rh}^{35} \mathrm{ClL}^{3}\right]^{+} 434$, and for $\left[{ }^{103} \mathrm{RhL}^{3}\right]^{+} 399$. N.m.r. $(298 \mathrm{~K})$: ${ }^{1} \mathrm{H}\left(\mathrm{CD}_{3} \mathrm{CN}, 80\right.$ $\mathrm{MHz}), \delta 2.3--3.7\left(24 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~m}\right) ;{ }^{13} \mathrm{C}\left(\mathrm{CD}_{3} \mathrm{NO}_{2}, 50.32 \mathrm{MHz}\right), \delta$ $34.42,32.27,23.26$, and 21.85 p.p.m. $\left(\mathrm{CH}_{2}\right)$. Infrared spectrum (KBr disc): $2980 \mathrm{w}, 2920 \mathrm{~m}, 2840 \mathrm{w}, 1430 \mathrm{vs}, 1405 \mathrm{~m}, 1310 \mathrm{~m}$, $1290 \mathrm{~m}, 1255 \mathrm{w}, 1240 \mathrm{~m}, 1195 \mathrm{w}, 1160 \mathrm{~m}, 1120 \mathrm{w}, 1080 \mathrm{w}$, $1020 \mathrm{~m}, 840 \mathrm{vs}, 555 \mathrm{vs}, 365 \mathrm{~m}, 305 \mathrm{~m}$, and $270 \mathrm{w} \mathrm{cm}^{-1}$.

X-Ray Structure Determination of trans- $\left[\mathrm{RhCl}_{2} \mathrm{~L}^{3}\right] \mathrm{PF}_{6}$.- A bright yellow crystal $(0.23 \times 0.15 \times 0.15 \mathrm{~mm})$ suitable for
X-ray analysis was obtained by recrystallisation from MeCN .
Crystal data. $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{RhS}_{4}{ }^{+} \mathrm{PF}_{6}^{-}, M=615.34$, monoclinic, space group $C 2 / c, a=11.9507(20), b=11.1055(15)$, $c=16.2067(18) \AA, \beta=95.197(21)^{\circ}, U=2142.08 \AA^{3}[$ from 2θ values of 30 reflections measured at $\pm \omega\left(2 \theta=21-30^{\circ}, \bar{\lambda}=\right.$ $0.71073 \AA)], D_{\mathrm{c}}=1.908 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, F(000)=1232, \bar{\lambda}(\mathrm{Mo}-$ $\left.K_{\alpha}\right)=0.71073 \AA, \mu=14.72 \mathrm{~cm}^{-1}$.

Data collection and processing. Stoë STADI-4 four-circle diffractometer. After determination of an accurate orientation matrix, 1549 independent data ($h-12$ to $12, k 0$ to $11, l 0$ to 17) were collected to $2 \theta=45^{\circ}$ using $\omega-2 \theta$ scans with ω scan width $(1.20+0.347 \tan \theta)^{\circ}$. Data reduction yielded 1067 reflections with $F \geqslant 6 \sigma(F)$ which were used for solution and refinement of the structure. No significant crystal decay, no absorption correction.

Structure analysis and refinement. Analysis of intensity statistics clearly indicated the position of the Rh atom; using this information as input DIRDIF ${ }^{21}$ successfully located the Cl, S, and \mathbf{P} atoms. Subsequent interative rounds of least-squares refinement and difference Fourier synthesis ${ }^{17}$ located all other non-H atoms. All non-H atoms were refined anisotropically; H atoms were included in fixed, calculated positions. ${ }^{17}$ The weighting scheme $w^{-1}=\sigma^{2}(F)+0.000475 F^{2}$ gave satisfactory analyses. At convergence, $R, R^{\prime}=0.0396$ and 0.0536 respectively for 121 parameters, $S=1.202$. The maximum and minimum residues in the final ΔF synthesis were +0.80 and $-0.51 \mathrm{e} \AA^{-3}$ respectively. The Rh atom sits on an inversion centre, with the $\mathrm{PF}_{6}{ }^{-}$counter ion having a two-fold axis through the P and two F atoms. Illustrations were prepared using ORTEP, ${ }^{18}$ molecular geometry calculations utilised CALC, ${ }^{19}$ and scattering factor data were taken from ref. 20. Bond lengths, angles, torsion angles, and fractional co-ordinates are given in Tables 3 and 4.

Acknowledgements

We thank the S.E.R.C. for support, and Johnson Matthey plc for generous loans of platinum metals.

References

1 M. Schröder, Pure Appl. Chem., 1988, 60, 517; M. N. Bell, A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, A. J. Lavery, G. Reid, and M. Schröder, J. Inclusion Phenomena, 1987, 5, 169 and refs. therein.
2 K. Travis and D. H. Busch, Inorg. Chem., 1974, 13, 2591; W. D. Lemke, K. E. Travis, N. E. Takvoryan, and D. H. Busch, Adv. Chem. Ser., 1977, 150, 358.
3 R. E. DeSimone and M. D. Glick, J. Am. Chem. Soc., 1976, 98, 762.
4 R. E. DeSimone and M. D. Glick, J. Am. Chem. Soc., 1975, 97, 942
5 N. W. Alcock, N. Herron, and P. Moore, J. Chem. Soc., Chem. Commun., 1976, 886.
6 P. H. Davis, K. L. White, and R. L. Bedford, Inorg. Chem., 1975, 14, 1753.

7 M. D. Glick, D. P. Gavel, L. L. Diaddario, and D. B. Rorabacher, Inorg. Chem., 1976, 15, 1190.
8 E. R. Dockal, L. L. Diaddario, M. D. Glick, and D. B. Rorabacher, J. Am. Chem. Soc., 1977, 99, 4530.
9 E. J. Bounsall and S. R. Koprich, Can. J. Chem., 1970, 44, 1481; P. K. Bhattacharya, J. Chem. Soc., Dalton Trans., 1980, 810; M. E. Sosa and M. L. Tobe, ibid., 1986, 427; M. J. Rosales, M. E. Sosa, and M. L. Tobe, J. Coord. Chem., 1987, 16, 59.
10 A. J. Blake, T. I. Hyde, R. S. E. Smith, and M. Schröder, J. Chem. Soc., Chem. Commun., 1986, 334.
11 A. J. Blake, T. I. Hyde, and M. Schröder. J. Chem. Soc., Dalton Trans., 1988, 1165.

12 T. Yoshida, T. Adachi, T. Ueda, M. Watanabe, M. Kaminaka, and T. Higuchi, Angew. Chem., 1987, 99, 1182; Angew. Chem., Int. Ed. Engl., 1987, 26, 1171.
13 T. F. Lai and C. K. Poon, J. Chem. Soc., Dalton Trans., 1982, 1465.
14 A. J. Blake, R. O. Gould, G. Reid, and M. Schröder, J. Organomet. Chem., 1988, 356, 389.
15 A. J. Blake, G. Reid, and M. Schröder, J. Chem. Soc., Dalton Trans., 1988, 1561.
16 T. Yoshida, T. Ueda, T. Adachi, K. Yamamoto, and T. Higuchi, J. Chem. Soc., Chem. Commun., 1985, 1137.
17 SHELX 76, Program for Crystal Structure Determination, G. M. Sheldrick, University of Cambridge, 1976.
18 ORTEP II, interactive version, P. D. Mallinson and K. W. Muir, J. Appl. Cryst., 1985, 18, 51.
19 CALC, Fortran 77 version, R. O. Gould and P. Taylor, University of Edinburgh, 1985.
20 D. T. Cromer and J. L. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.
21 DIRDIF, P. T. Beurskens, W. P. Bosman, H. M. Doesbury, Th. E. M. van den Hark, P. A. J. Prick, J. H. Noordik, G. Beurskens, R. O. Gould, and V. Parthasarathia, 'Applications of Direct Methods to Difference Structure Factors,' University of Nijmegen, 1983.

Received 8th July 1988; Paper 8/02739K

[^0]: \dagger cis-Dichloro(1,4,8,11-tetrathiocyclotetradecane- $S^{1} S^{4} S^{8} S^{11}$)-
 rhodium hexafluorophosphate and trans-dichloro(1,5,9,13-tetrathia-cyclohexadecane- $\mathbf{S}^{1} S^{5} S^{9} S^{13}$)rhodium hexafluorophosphate.
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii-xx.

